

Consumer Aware Warehouse Management
Design Document

SDMay20-25

Client: Jimmy Paul

Advisor: Goce Trajcevski

Team Member Roles

Andrew Smith
arsmith3@iastate.edu

Database Administrator
Quality Assurance Engineer
Software Developer

Elijah Buscho
elijah@iastate.edu

Test Engineer
Project Manager
Software Developer

Jameel Kelley
jamkelley22@gmail.com

Report Manager
Software Architect
Software Developer

Lindsey Sleeth
lssleeth@iastate.edu

Meeting Scribe
Project Manager
Software Developer

Omair Ijaz
oijaz@iastate.edu

Quality Assurance Engineer
Meeting Facilitator
Software Developer

Sam Stifter
stifter@iastate.edu

Test Engineer
Software Architect
Software Developer

Team Email: sdmay20-25@iastate.edu

Team Website: http://sdmay20-25.sd.ece.iastate.edu/

Revised: December 8, 2019, Version 3

mailto:sdmay20-25@iastate.edu
http://sdmay20-25.sd.ece.iastate.edu/

 Design Document Revision 3

Executive Summary
SDMay20-25 is working with Crafty LLC, a company that provides offices with food, beverages, and
event management. It is estimated by Crafty that $600,000 worth of sales are missed annually due to
insufficient stock, and $100,630 worth of annual profit is lost due to expired products. In addition,
three full-time employees dedicate 50% of their time to evaluating product stock that should be
ordered. Crafty is seeking a product forecasting algorithm to predict how much of each product
should be stocked in Crafty’s product warehouses to account for their client’s needs. Crafty is
experiencing issues with their current solution because it takes into account only four input variables
when they actually have many more available. SDMay20-25’s will develop a forecasting algorithm
that will strive to reduce (1) waste of expired product, (2) missed sales due to insufficient inventory,
and (3) erroneous and time-consuming labor efforts. SDMay20-25 has analyzed the data provided by
Crafty and has determined the limits of the current solution and identified additional input variables.

SDMay20-25 will develop a forecasting algorithm, Consumer Aware Warehouse Management
System, to determine how much of each product should be stocked in Crafty’s product warehouses.
The forecasting algorithm will take four input variables that Crafty is currently using and incorporate
up to an additional seven input variables. The output of the forecasting algorithm will generate a
report detailing which products should be ordered. These results will be displayed in a table, where
Crafty will be able to see the reasoning behind the decisions that the algorithm made, as well as,
make adjustments to the input variables.

Below, SDMay20-25 has briefly listed the requirements, development standards, practices, and
applicable courses for the development of the project.

Summary of Requirements
The system-to-be will satisfy the following requirements. For more information on each requirement
and rationale behind each view Section 1.3.

● Take data from the Crafty database
● Make predictions about optimal ordering to maintain product warehouse stock
● Consider future product ordering
● Have a visual component to interface with the generation of orders
● Be able to handle approximately 1200 SKUs a day
● Generate a report on demand

 SDMay20-25, December 8, 2019 2

 Design Document Revision 3

Development Standards & Practices Used
Software requirements and design process artifacts, team workflow, and project management, and
engineering standards are briefly listed below.

Software Requirements and Design Process Artifacts
● Architecture Diagram
● Class Diagram
● Context Diagram
● Use Case Diagram

Team Workflow and Project Management
● Agile Methodology
● Gantt Chart
● Iterative Methodology
● Risk Assessment Matrix
● Work Breakdown Structure

Applicable Courses from Iowa State University Curriculum
The following list emphasizes the curriculum at Iowa State University whose contents directly apply to
the main technical components in this project.

● Com S 227, Intro to Object-Oriented Programming in Java
● Com S 228, Intro to Data Structures in Java
● Com S 252, Linux Operating Essentials
● Com S 309, Software Development Practices
● Com S 311, Intro to Algorithm Design and Analysis
● Com S 362, Object-Oriented Analysis and Design
● Com S 363, Intro to Database Management Systems
● Com S 409, Software Requirements Engineering
● Com S 417, Software Testing
● SE 319, Software Construction and User Interfaces
● SE 329, Software Project Management
● SE 339, Software Architecture and Design
● DS 201, Intro To Data Science
● ENG 314, Technical Communication

 SDMay20-25, December 8, 2019 3

 Design Document Revision 3

New Skills / Knowledge Acquired Not Taught in Courses
The following list emphasizes the main technical components in our project that have not been
captured through Iowa State University coursework. Knowledge of these topics will be acquired
through research, experimentation, and implementation.

● Machine Learning-Based Algorithms
● Frontend Development Frameworks
● Regression-Based Algorithms

 SDMay20-25, December 8, 2019 4

 Design Document Revision 3

Table of Contents
Executive Summary 2

Summary of Requirements 2

Development Standards & Practices Used 3

Software Requirements and Design Process Artifacts 3

Team Workflow and Project Management 3

Applicable Courses from Iowa State University Curriculum 3

List of Figures and Tables 7

Definitions 7

1. Introduction 8

1.1 Acknowledgement 8

1.2 Problem and Project Statement 8

1.3 Requirements 13

1.3.1 Functional Requirements 13

1.3.2 Non-Functional Requirements 14

1.4 Intended Users and Uses 14

1.5 Assumptions and Limitations 15

1.5.1 Assumptions 15

1.5.2 Limitations 15

1.6 Expected End Product and Deliverables 16

2. Specifications and Analysis 17

2.1 Proposed Design 17

2.2 Design Analysis 18

2.3 Development Process 19

2.4 Design Plan 20

3. Statement of Work 21

3.2 Technology Considerations 22

 SDMay20-25, December 8, 2019 5

 Design Document Revision 3

3.3 Task Decomposition 23

3.4 Possible Risks And Risk Management 28

3.5 Project Proposed Milestones and Evaluation Criteria 30

3.6 Project Tracking Procedures 31

3.7 Expected Results and Validation 32

4. Project Timeline, Estimated Resources, and Challenges 32

4.1 Project Timeline 32

4.2 Feasibility Assessment 36

4.3 Personnel Effort Requirements 36

4.4 Financial Requirements 36

5. Testing and Implementation 37

5.1 Interface Specifications 37

5.2 Hardware and Software Required 37

5.3 Functional Testing 38

5.4 Non-Functional Testing 39

5.5 Process 39

5.6 Results 40

6. Closing Material 41

6.1 Conclusion 41

6.2 References 41

6.3 Appendices 42

 SDMay20-25, December 8, 2019 6

 Design Document Revision 3

List of Figures and Tables
Figure 1.1: Crafty LLC Use Case Diagram

Figure 1.2: Work of Forecasting Context Diagram

Figure 1.3: Product Use Case Diagram

Figure 2.1: System Architecture Diagram

Table 3.1: SDMay20-25’s Work Breakdown Structure

Table 3.2: The Risk Matrix Used to Assess The Risk Severity

Figure 3.3: The Gitlab Board View Used to Track Issues

Figure 4.1: Gantt Chart for Fall 2019 (Weeks 1-8)

Figure 4.2: Gantt Chart for Fall 2019 (Weeks 9-16)

Table 4.3: Weekly Task Breakdown for Spring 2020

Table 5.1: Software Tools for Testing

Figure 5.2: Testing Workflow

Definitions

1. Product Warehouse

A location where products are stored before they are shipped to customers.

2. Product Forecasting

The work of predicting the future need of a product given input variables such as historical
consumption of a product and knowledge of any future events that might impact the forecasts
such as weather or seasonal products.

3. Distributor

A wholesaler of goods that Crafty orders from to supply its warehouses with stock to later
distribute to their clients.

4. Stock Keeping Unit (SKU)

 SDMay20-25, December 8, 2019 7

 Design Document Revision 3

A combination of a product and its ordering size. For instance, a six-pack of LaCroix would be
different from a twelve-pack of LaCroix.

5. Product Order Table

A table generated by Crafty to display what needs to be ordered from distributors to maintain
the proper stock in the Crafty warehouses.

1. Introduction
SDMay20-25 is working with Crafty LLC, a company that provides offices with food, beverages, and
event management. It is estimated by Crafty that $600,000 worth of sales are missed annually due to
insufficient stock, and $100,630 worth of profit annually is lost due to expired products. In addition,
three full-time employees dedicate 50% of their time to evaluating product stock that should be
ordered.

Crafty is seeking a product forecasting algorithm that improves upon the existing algorithm to predict
how much of each product should be stocked in Crafty’s product warehouses. SDMay20-25 has
analyzed the data provided by Crafty and has determined the limits of the current solution and
identified additional input variables needed to make successful improvements.

1.1 Acknowledgement
SDMay20-25 would like to acknowledge and thank the following:

Iowa State University’s Departments Software and Computer Engineering and the Department of
Computer Science for providing a strong foundational knowledge through education, professional
insights and experience, and resources to complete the project.

Dr. Goce Trajcevski for providing technical expertise related to the project subject and mentorship to
guide SDMay20-25 to meet course outcomes and successful project completion.

Crafty LLC, headquartered in Chicago, IL, for the opportunity to collaborate with industry to solve a
real-world problem that provides current industry technological challenges and opportunities for
learning. Crafty has granted access to real data used to design, build, and test a solution with, as well
as mentorship in industry best-practices.

Crafty CTO and co-founder, Jimmy Paul, for the time, feedback, and resources provided to
SDMay20-25 during project development.

1.2 Problem and Project Statement

 SDMay20-25, December 8, 2019 8

 Design Document Revision 3

SDMay20-25’s client, Crafty, desires a product forecasting algorithm to predict how much of each
product should be stocked in Crafty’s product warehouses.

Crafty is experiencing issues with their current solution because it is only taking into consideration
four input variables when they actually have many more. The fact that the solution is not incorporating
more of the available variables results in:

● Waste of expired product
● Missed sales due to insufficient inventory
● Erroneous and time-consuming labor efforts

The software solution SDMay20-25 plans to develop will incorporate up to seven additional variables,
which will enable Crafty to accommodate product needs from (1) current customers, (2) new
customers, and (3) any seasonal or sudden, known changes outside of regular needs. The priority of
these variables to be incorporated will be determined by Crafty.

The software solution that Crafty currently maintains generates a distributor purchase report. The
report gives Crafty an itemized list of products to order from each distributor. As mentioned
previously, when generating a distributor purchase report, the current software solution only takes
into account the following four input variables:

● Client order history
● Distributor schedule and lead time
● Missed sales
● Client inventory reorder thresholds

The current solution leaves a lot of room for improvement. Specifically, the following input variables
are known but not utilized for each product:

● Needs of new customers for each product
● Consumption trends for each product by the client
● Seasonality, or other sudden known changes, that determines product demand
● Product expiration dates
● Available space in the product warehouse
● Pricing trends for the same product across multiple distributors
● Accuracy of distributor delivery windows

Incorporating the mentioned input variables would help Crafty improve their solution and give them
more opportunities for revenue. It is estimated by Crafty that $600,000 worth of sales are missed
annually due to insufficient stock, and $100,630 worth of annual profits are lost due to expired
products. In addition, three full-time employees dedicate 50% of their time to evaluating product stock
that should be ordered. In response to this problem, SDMay20-25 will build a software solution that

 SDMay20-25, December 8, 2019 9

 Design Document Revision 3

will incorporate the same input variables that Crafty is currently using, as well as, additional input
variables. Incorporating additional input variables will help to maintain an accurate and robust system
to predict the products that Crafty must reorder.

The overall use case for Crafty’s current operation is shown below in Figure 1.1. While undoubtedly
simplified, it serves to define the context of which the Consumer Aware Warehouse Order
Management system will be operating in.

Figure 1.1 - Crafty LLC Use Case Diagram

We see the system-to-be will be internal to the Crafty team, yet it will function alongside the
numerous adjacent systems already in place shown in Figure 1.2. Thus, the Consumer Aware
Warehouse Management system will not be a core component of Crafty’s operation but will function
as an advisory tool.

 SDMay20-25, December 8, 2019 10

 Design Document Revision 3

Figure 1.2 - Work of Forecasting Context Diagram

Figure 1.2 provides scope for the project and shows how the data flows to and from the adjacent
systems, which are the categories of input variables that directly influence the work of forecasting.
The scope of this diagram is how the system interacts for one selected distributor and its associated
products. It can be seen that the forecasting algorithm, shown as the work of forecasting, will take into
consideration input variables from customer order history which includes future product orders and
historical ordering data; product warehouse data such as space constraints and current warehouse
inventory; daily inventory of each customer; and distributor information such as the products available
by that distributor, which accounts for seasonal items, pricing of items, and the reorder schedule
which provides turnaround time from product order to delivery. All of these input variables are pulled
from the Crafty database to be input into the forecasting algorithm which will generate a report of
what Crafty should order from that distributor.

The product use case diagram shown in Figure 1.3 shows the main use case of viewing the
distributor purchase order. The user Crafty selects a distributor to view a purchase order for. When
the distributor is selected, the input variables mentioned above are pulled from the database and
provided as input for the forecasting algorithm. The forecasting algorithm is run and outputs products
that must be reordered. These results will be displayed in a product order table which will provide the
total number to reorder for each product and the reasoning behind why that prediction was made.
This diagram would be placed where the black box labeled “Consumer Aware Warehouse

 SDMay20-25, December 8, 2019 11

 Design Document Revision 3

Management” is in Figure 1.1. It is placed in a separate diagram for allowing for more detail and
separation of the work of forecasting from the overall Crafty system.

Figure 1.3 - Product Use Case Diagram

The following artifacts will be generated in response to the development of the proposed solution:

● Team Meeting Notes
● Bi-Weekly Status Report Updates
● Architecture and Design Plan Documentation
● Design Document (final and revisions)
● Senior Design Website
● A Functional and Improved Product Forecasting Algorithm
● A User Interface to Display Product Order Table and Modify Input Variables

1.3 Requirements
The following functional and non-functional requirements are defined within the project context to be
demonstrated for successful project completion.

 SDMay20-25, December 8, 2019 12

 Design Document Revision 3

1.3.1 Functional Requirements

1. The system shall take data Crafty’s database as input for creating a distributor purchase
report.

The software solution must take data from Crafty’s database as input for the product
forecasting algorithm so that it can accurately predict quantities of products Crafty must
reorder from each distributor. This requirement is seen in Figure 1.1 as the “Pull Information
from Database” use case.

2. The system shall optimize ordering for each distributor.

This requirement is shown by the adjacent systems in Figure 1.2 as input variables for the
work of forecasting. These input variables will be used to generate a distributor purchase
report as output.

3. The system shall take existing input variables, as well as, new input variables such as
onboarding of new clients.

In order for the product forecasting algorithm to perform better than the existing algorithm, it
must take into consideration the current input variables, as well as, additional input variables.
This is discussed in Section 1.2.

4. The system shall have a user interface to display the rationale for output and to allow Crafty to
modify orders to be placed.

The Crafty procurement team needs a way to interface with the system tool to make manual
adjustments and view the distributor product ordering report. This is documented in Figure 1.3
as the “View Product Order Table” which is an inclusion use case of the Crafty procurement
team.

1.3.2 Non-Functional Requirements
1. The system shall be able to handle approximately 1200 Stock Keeping Units a day

The system in place that Crafty is using is able to handle this number of SKUs in a day. Due to
this, the SDMay20-25 software solution must be able to handle this many SKUs a day at a
minimum.

2. The system SHALL generate a report on demand that will take less than two minutes 90% of
the time and will take less than five minutes the remainder of the time in order to satisfy the
need for on-demand ordering analysis.

 SDMay20-25, December 8, 2019 13

 Design Document Revision 3

The current Crafty system in place for doing ordering analysis was observed to take less than
a minute to generate its results and display it to the view. It is important that the SDMay20-25
solution be within a reasonable time frame. The client has expressed that a longer execution
time can be acceptable if it means saving considerable employee effort. In Figure 1.3, this
product use case can be seen as the “View Product Order Table” use case.

Please note that in addition to the listed requirements, SDMay20-25 recognizes that there are
additional non-functional requirements such as security and privacy. This project will not be used in a
production environment, and for that purpose, those requirements are out of scope and will be
handled accordingly by SDMay20-25’s client Crafty.

1.4 Intended Users and Uses
The software solution proposed in Section 1.2 is designed and intended for usage by Crafty as a
solution to the problem. The solution will use a larger set of data than what is currently being used,
and will enable Crafty to maximize reduce the number of missed sales, expired products, and redirect
their workforce. The Crafty procurement team will use the system to generate and modify a product
order table by interacting with the user interface. As shown in the use case diagram Figure 1.3, the
product order report will then be used to generate a distributor purchase order.

1.5 Assumptions and Limitations
Assumptions and limitations for the project are detailed below. It is intended that SDMay20-25’s
solution will be an extension of the current Crafty solution and may not use all of the same
technologies for implementation in order to reduce the expense of development and produce a more
accurate solution. Design decisions as such will be well documented in Section 2.1.

1.5.1 Assumptions
- The system will maintain communication with an instance of the Crafty database.

The context diagram shown in Figure 1.2 implies that in order for the software solution to
forecast the products that must be ordered, the system must maintain communication must
have access to input variables existing in the Crafty database.

- The software solution will be developed, used, and maintained by English speakers.

The software solution will be developed and implemented in English. This is because the
project will be implemented and documented in English, therefore, it will not be translated into
another language.

- The system will only be used to manage the inventory of a single product warehouse.

 SDMay20-25, December 8, 2019 14

 Design Document Revision 3

This system will not be used in a production environment and the scope has been limited by
showing that the algorithm will work for one product warehouse.

- The system will only predict products to be reordered from one distributor at a time.

This is because ordering from multiple distributors may degrade the performance of the system
and orders are placed individually by a distributor.

1.5.2 Limitations
- The accuracy of system predictions is completely reliant on the accuracy of input variables

given by the database.

The context diagram shown in Figure 1.2 shows the output of the software solution is based
entirely on the input variables pulled from the Crafty database. If the data in the database is
incorrect for any reason, the result cannot be guaranteed to be correct.

- The database will match Crafty’s implementation.

The software solution is largely based on the input variables provided by the Crafty database.
Crafty requires that a minimum version of PostgreSQL version 11 is used for easy integration
of the solution with their existing solution and to avoid any data loss.

1.6 Expected End Product and Deliverables
The software solution will consist of several deliverables to Crafty and Iowa State University’s Senior
Design program. These deliverables are discussed in Section 1.2 and will be delivered upon project
completion. The primary deliverables to Crafty will be a Design Document and the software solution
implementation.

SDMay20-25 will also produce documentation artifacts such as research and design decisions,
weekly reports, lightning talks, and UML diagrams which contribute to the understanding of the design
of the proposed solution.

 SDMay20-25, December 8, 2019 15

 Design Document Revision 3

2. Specifications and Analysis
SDMay20-25 has developed the following design implementation plan for the software solution. The
design and implementation are developed in response to the problem statement in Section 1.2 and is
inclusive of functional and non-functional requirements defined in Section 1.3.

2.1 Proposed Design
The following development technologies have been chosen for the development of the software
solution in response to the requirements defined in Section 1.3. The System Architecture Diagram
shown below in Figure 2.1 lists the technologies used for development, as well as, the flow of
communication between systems.

Figure 2.1: System Architecture Diagram

In accordance with functional requirement 1, SDMay20-25 must obtain anonymized data from Crafty
as SDMay-20-25 will need access to the data on demand. In order to meet this requirement,

 SDMay20-25, December 8, 2019 16

 Design Document Revision 3

SDMay20-25 will use a PostgreSQL database which will contain the data from Crafty. See Appendix
A for a diagram of Crafty’s existing database schema and relation. The completed database will
enable SDMay20-25 to produce an initial website which will allow Crafty to view the output from the
algorithm and modify the input variables.

There are several potential solutions to address the main functional requirements 1.3.1.2. It is
required that the forecasting algorithm be able to predict the minimum quantity of a product to order,
given the same input variables Crafty is currently using, as well as, additional variables mentioned in
Section 1.2. SDMay20-25’s approach would be a time series based approach that would take several
input variables and calculate the demand for a product. In order to test and demonstrate the system,
the team will need to develop a frontend application with the functionality to (1) trigger the
computation of the prediction algorithm (2) display the results and reasoning, and (3) adjust certain
input variables. This functionality is reflected in requirement 1.3.1.4.

We will solve these problems using an MVC design pattern, where the Model will be a PostgreSQL
database, the controller will be a server running Java Spring Hibernate, the data forecasting controller
will be using Python Pandas, and the view will be written using ReactJS. The system architecture
diagram detailing this can be seen in Figure 2.1.

2.2 Design Analysis
As mentioned in Section 2.1, SDMay20-25 will use PostgreSQL in the data layer to host Crafty’s data
and to interface with the application layer. This decision was made for a variety of factors, with major
emphasis being that it is the database system that Crafty currently uses. Other contributing factors
include an open-source framework and team familiarity with MySQL scripting language. PostgreSQL
was chosen since it is similar to MySQL, but expands upon functionality and will make delivery and
integration of the final product easier for Crafty.

In the application layer, SDMay20-25 has decided to use Java with a Spring-hibernate framework.
Java has widespread support in the university, is predominantly used in industry, and maintains a
large online community of support and resources. Spring is also very well documented and has many
online resources both in the forums and directly from the developers. Additionally, all members of the
team are familiar with the Java software suite and Spring.

SDMay20-25 has considered a variety of options for forecasting the products that Crafty must
reorder. One technology taken into consideration is pandas, a Python library; pandas is a data
analysis library that includes tools for time series analysis. In addition, the programming language R
is an alternative to pandas. R encompasses many different statistical use cases, and it includes a
time series forecasting package called “forecast”. SDMay20-25 will continue to evaluate this
technology further depending on how the early mathematical models work and Crafty’s needs.

 SDMay20-25, December 8, 2019 17

 Design Document Revision 3

In order to accurately forecast the products that Crafty will need to reorder, SDMay20-25 will be using
a time series prediction algorithm. SDMay20-25 will continue to research which solution has the best
potential for success and will document the decisions made. SDMay20-25 may attempt solutions for
both mathematical regression and machine learning as a prototype. However, at this point in time, the
first prototype will use time series as it is a simpler method for prediction. Additionally, there may not
be enough data for an effective model for deep learning.

2.3 Development Process
SDMay20-25 will adhere to Iterative development processes. This method of development was
selected over the Waterfall development process due to the iterative nature of the work and the
potential for variable requirements. Iterative was selected over Agile because the requirements are
defined at the beginning of the project. Requirements will likely not be added as the project
progresses; however, as the solution is developed, there will be several rounds of analysis on the
solution to determine the accuracy. Each change will represent an iteration and the previous iteration
will be used to make the next iteration better. The Iterative methodology is frequently used in industry
and is effective for the development of projects in which a high level of adaptability is induced by
changing variables.

The project will be completed in development cycles with regular customer interaction and feedback.
Regular customer interaction and feedback will be demonstrated by hosting bi-weekly meetings with
Crafty to demonstrate components of the solution and iteratively adjust the requirements based on
their needs to ensure adherence to the requirements that Crafty has defined for the project, minimize
the number of missed requirements, and reduce development efforts that are not meaningful.

SDMay20-25 has broken into development groups and the groups were assigned tasks for
completion between each cycle. These tasks are outlined in Table 3.1. Each task has been broken
into subtasks that can be implemented in bi-weekly cycles. An example cycle entails the following:

1. At the beginning of the cycle, SDMay20-25 has defined upcoming tasks, estimated time for
completion, and selected tasks to be completed for the upcoming cycle. SDMay20-25
identified that:

a. The server and database needs to be setup
b. The database and website prototype should be hosted on the server
c. The database should be instantiated with Crafty’s data
d. Data endpoints should be defined
e. A prototype of the website should be completed
f. The website should interact with the database to display data

2. Tasks were evaluated based on the time taken for completion.
3. Tasks were assigned to each individual team member based on the available number of work

hours.
4. Throughout the week, each member worked on assigned tasks and updated the task board.

 SDMay20-25, December 8, 2019 18

 Design Document Revision 3

5. At each team meeting throughout a given week, SDMay20-25 discussed what was done, what
needs to be done next, when the tasks should be completed by, and any impediments with
current task completion.

2.4 Design Plan
The following design plan is based on the functional and non-functional requirements described in
Section 1.3, users and use cases in Section 1.4, and assumptions and limitations in Section 1.5.

SDMay20-25 will develop the software solution with the following use cases in mind:

1. View Distributor Purchase Order
2. Generate Distributor Purchase Order
3. Run Forecasting Algorithm
4. Pull Information from Database

These use cases are represented in Figure 1.3 in the product use case diagram.

SDMay20-25’s software solution will consist of three main systems, each with a number of
subsystems. The layers of SDMay20-25’s system are the database, the server (backend), and the
frontend. These systems will communicate through database queries and REST calls. This integrates
with the use cases shown in Figure 1.3 by allowing the software solution to store and retrieve data in
non-volatile memory, run an intensive forecasting algorithm on a dedicated server, and communicate
with an interactive frontend to display results.

A time-series prediction framework will be used for the initial approach to solving the problem.
Time-series predictions are especially useful for datasets where the goal is to make a prediction over
a period of time. The time series can also be useful for identifying seasonal trends, which Crafty has
identified as a priority in their desired prediction algorithm. As development continues, the solution will
be evaluated (more details are explained in Section 5.3) If the results are not satisfactory, changes
will be made to inputs or other prediction parameters. In a worst-case scenario, another model may
be evaluated and explored.

Each part of the system allows the SDMay20-25 team to implement a solution to the use cases
shown in Figure 1.3. The frontend view will display the purchase orders that were created from the
algorithm. The server will run the algorithm that will allow the generation of the purchase orders. It will
also query the database for inputs in running that algorithm. Finally, the frontend will allow for input of
special event cases which were not taken into account by the backend system.

 SDMay20-25, December 8, 2019 19

 Design Document Revision 3

3. Statement of Work
SDMay20-25 has completed market research to understand the products and technologies currently
available. Market research helped shape the appropriate technologies selected and develop a set of
tasks for developing the forecasting algorithms. Tasks were derived from the provided milestones and
evaluation criteria. Once the tasks were defined, personnel assignments were made, project risks
were evaluated, and expected results were defined.

3.1 Previous Work And Literature

The following paragraphs will discuss two different approaches that are within the scope of
SDMay20-25’s solution. These different approaches include a machine learning approach that is
being used by Walmart, and a regression-based approach.

The machine learning approach, as outlined in Artificial Intelligence in Supply Chain Planning is
Changing Retail and Manufacturing by Bruno Delahaye, uses machine learning and AI to predict the
demand of a product based on several factors such as: (1) weather, (2) seasons, (3) holidays, (4)
promotions, and (5) past sales data. The article gives an example of showing how weather trends
impact the sale of steaks and hamburgers. If the weather is warm and sunny, the sale of hamburgers
is higher. Otherwise, if the weather is cloudy, the sale of stakes is higher. This approach also takes
into consideration the shipping time it takes for the product to reach the warehouse and store. It does
this by looking into the distance, road conditions, weather, and the capacity of the shipping container
[1].

The advantage of this machine learning approach is that it provides the ordering of products with
better accuracy to the demand. Additionally, the machine learning approach reduces cost and
error-prone human interaction, which results in efficiency and cost-effectiveness. The disadvantages
of this approach are the size and amount of resources needed to maintain. This relates to
SDMay20-25’s project because the machine learning approach takes into consideration past sales
data and the time it takes to get the product to the product warehouse. It is different from
SDMay20-25’s solution because the approach takes in more factors such as weather, promotions,
and road conditions.

The other approach is an example of a regression-based model as outlined in the article Single
Regression: Approaches to Forecasting from the North Carolina State University. This
regression-based approach is able to predict the demand based on past sales and the seasons. This
approach takes the input variables and is able to calculate the demand for a given day during a
season using variable linear equations [2].

 SDMay20-25, December 8, 2019 20

 Design Document Revision 3

The advantage of this approach is the small number of resources needed to build and maintain it
because it doesn’t need much data to operate. One disadvantage of this approach is that it does not
take into account spikes in demand due to factors that aren’t based on past sales, such as weather.
Another disadvantage is that it doesn’t take into consideration the shipping time of the product.
Instead, it might determine that the demand for a product the next day is high, so an order is placed
but may take a week to arrive, thus, leading to missed sales during that week. This relates to
SDMay20-25’s solution because this approach takes into consideration past data. It differs from
SDMay20-25’s solution because this approach doesn’t take into consideration the shipping time to
get the product to the product warehouse.

3.2 Technology Considerations
SDMay20-25 is using PostgreSQL for the database. SDMay20-25 chose this because the queries are
similar to MySQL which our team has experience with and are comfortable using relational
databases. PostgreSQL also is the software our client uses so it will be easy to import their data and
integrate it with their system. PostgreSQL also has high reliability because it doesn’t allow users to
bypass the data checks, which makes sure it is valid data. Whereas, with MySQL, a user could
bypass data checks, prior to version 5.0. PostgreSQL is open source so there is no licensing and
free.

For the server, SDMay20-25 is using Java with Spring and Hibernate Frameworks. Java, Spring, and
Hibernate are taught at Iowa State University and will allow the team to develop quickly due to the
support and familiarity that can be provided. Additionally, there is a large online community where
answers can be found. A drawback to this software is the learning curve as it can be difficult to set up.

For the frontend, SDMay20-25 will be using TypeScript (JavaScript superset) with a React
framework. The react framework provides benefits such as flexibility, modularity, rendering efficiency,
and team experience with the framework. TypeScript will allow us to write a flexible interface that can
adjust to changes by the backend. Additionally, one of the strengths of React is writing and reusing
modular components that can be reused by passing different properties to it. If requirements change
and components are modular and reusable then not all of the code will have to be rewritten. Also,
React allows for specific rendering of components. Rather than running a program and reloading a
page when the data is retrieved, the component can be shown as loading until that data is populated,
then only that specific component is re-rendered. While performance on the frontend is not a large
concern, this will help improve the user experience of using the end product. Finally, SDMay20-25’s
frontend team has done web development with React and thus, will speed up the development time
and decrease the learning curve.

SDMay20-25 will be using a statistic-specific algorithm. SDMay20-25 will be using Python Pandas for
the forecasting and will be having it interface with the Spring backend. There are connectors that will

 SDMay20-25, December 8, 2019 21

 Design Document Revision 3

allow Pandas programs to run and communicate back to a Java application. One drawback to this is
that it is another interface that will have to be tested to ensure the data is transferred accurately and
without loss.

3.3 Task Decomposition
The tasks are decomposed into three categories: requirements, backend, and frontend.

The frontend and backend teams will work synchronously which allows for a minimal amount of task
interdependence. This means that each task for frontend and backend should be completed around
the same time. Tasks are distributed to each team such that they correspond to the current milestone.

Team Members

Elijah Buscho (EB) Omair Ijaz (OI)

Jameel Kelley (JK) Lindsey Sleeth (LS)

Andrew Smith (AS) Sam Stifter (SS)

Task Description Dependencies Team Member (s) Effort
Hours

1 Requirements Elicitation & Project Planning

1.1 Define Team
Collaboration Policies

 JK, LS, SS, OI,
EB, AS

6

 1.1.1 Role Assignments JK, LS, SS, OI,
EB, AS

6

 1.1.2 Development Workflow JK, LS, SS, OI,
EB, AS

6

 1.1.3 Communication Policy JK, LS, SS, OI,
EB, AS

6

1.2 Client Background JK, LS, SS, OI,
EB, AS

12

 SDMay20-25, December 8, 2019 22

 Design Document Revision 3

1.3 Meet With Client to
Understand Problem

 JK, LS, SS, OI,
EB, AS

24

 1.3.1 Create Problem
Statement

 JK, LS, SS, OI,
EB, AS

6

 1.3.1.1 Context Diagram JK, LS 4

 1.3.1.2 Product Use Case
Diagram

 LS, EB 4

 1.3.2 Obtain Supporting
Information About
Problem From Client

 JK, LS, SS, OI,
EB, AS

12

 1.3.2.1 Define Assumptions and
Limitations

 JK, LS 2

 1.3.2.2 Financial Requirements JK 1

 1.3.2.3 Risk Matrix OI, EB 4

1.4 Define Functional and
Non-Functional
Requirements

1.3 JK, LS 12

1.5 Define Milestones OI, SS 2

 1.5.1 Project Tracking
Procedures

 OI, SS 10

 1.5.2 Evaluation Criteria OI, SS 4

1.6 Proposed Design 1.3, 1.4 JK, LS, SS, OI,
EB, AS

8

 1.6.1 Research Technology JK, LS, SS, OI,
EB, AS

30

 1.6.2 Market Research AS 4

 1.6.3 Design Plan 1.6.1, 1.6.2 JK, LS, SS, OI,
EB, AS

30

 SDMay20-25, December 8, 2019 23

 Design Document Revision 3

 1.6.3.1 System Architecture
Diagram

 SS, JK 4

 1.6.3.2 Class Diagram EB, LS, OI 9

 1.6.4 Define Development
Process

 SS, OI 10

1.7 Design Analysis 1.6 AS, LS 6

1.8 Task Decomposition JK, LS, SS, OI,
EB, AS

6

 1.8.1 Work Breakdown
Structure

 LS, OI, SS, JK 24

 1.8.2 Personnel Effort
Requirement

 JK, LS, SS, OI,
EB, AS

6

 1.8.3 Gantt Chart OI, EB 4

 1.8.4 Project Timeline OI, EB 4

 1.8.5 Team Task Assignments JK, LS, SS, OI,
EB, AS

10

1.9 Define Test Plan 1.6, 1.8 JK, LS, SS, OI,
EB, AS

6

 1.9.1 Interface Specification SS 2

 1.9.2 Hardware and Software
Required

 SS 1

 1.9.3 Functional Testing SS, JK 6

 1.9.4 Non-Functional Testing SS, LS 6

 1.9.5 Overall Process JK, LS, SS, OI,
EB, AS

12

 1.9.6 Expected Results JK, LS, SS, OI,
EB, AS

24

Total Requirements & Project Planning 333

 SDMay20-25, December 8, 2019 24

 Design Document Revision 3

2 Backend

2.1 Setup Development
Environment

1.6 AS, OI, SS 6

2.2 Local Database Setup 1.6, 2.1 AS, OI, SS 6

 2.2.1 Importing Client Data AS, SS 5

2.3 Initial Server Setup 1.6, 2.1 AS, SS 10

 2.3.1 Install Required
Packages

 SS 2

 2.3.2 CI/CD SS, OI 6

 2.3.3 Access Control SS 2

2.4 API Setup 1.6, 2.1, 2.2, 2.3 AS, SS,OI 10

 2.4.1 Create Initial Endpoints AS, SS 10

 2.4.2 Iterate On Endpoint
Development

 AS, SS, OI 6

2.5 Provide Algorithm With
Required Data

1.6, 2.1, 2.2, 2.3 AS, SS, OI 9

 2.5.1 Establish Round Trip
Communication With
Spring API Controller

 AS, SS, OI 9

2.6 Test Dataset
Development

2.2, 2.3 OI, SS, LS 44

 2.6.1 Identify Key Dates of
Special Events In History

 SS, LS 10

 2.6.2 Split Dataset Into
Training and Evaluation

 SS, OI 6

2.7 Algorithm Development 2.6 AS, SS, OI, LS 76

 2.7.1 Evaluate Algorithms AS, SS, OI 10

 SDMay20-25, December 8, 2019 25

 Design Document Revision 3

 2.7.1.1 Analyze Usefulness of
Existing Input Variable

 AS, SS, OI 6

 2.7.1.2 Speculate Usefulness of
Additional Input Variables

 AS, SS, OI, LS 8

 2.7.2 Acceptance Testing AS, SS, OI 20

Total Backend 261

3 Frontend

3.1 Setup Development
Environment

1.6.1 LS, EB, JK 6

3.2 Mockup UI 1.4, 1.6 JK, LS 4

3.3 Create Website Using
React

1.4, 1.6, 3.1 JK, LS, EB 2

 3.3.1 Table Components JK, EB, LS 6

 3.3.1.1 Static Components JK, EB 20

 3.3.1.2 Dynamic Components 3.3.1.1 JK 8

 3.3.1.3 Editable Fields 3.3.1.2 JK, LS 4

 3.3.2 Dropdown Selectors JK 4

 3.3.3 Round Trip Data
Communication

3.3.1, 3.3.2 JK, LS 2

 3.3.3.1 Populate Data in Table
From Database

 JK 4

 3.3.3.2 Store Data in Database
From Editable Fields

 JK, LS 6

3.4 Host Website On Server 3.3 JK 4

3.5 Define Endpoints 3.6 JK, LS, AS 6

 SDMay20-25, December 8, 2019 26

 Design Document Revision 3

 3.5.1 Determine Endpoints
Needed

 JK, LS, AS 6

 3.5.2 API Documentation JK, LS, AS 6

 3.5.3 Endpoint Documentation JK, LS, AS 6

3.6 Fake JSON 2.1 JK 3

3.7 Test Components 3.3.1, 3.3.2,
3.3.3

SS, JK, LS 12

Total Frontend 109

Grand Total 703

Weekly Hours per Individual 7.3

Table 3.1: SDMay20-25’s Work Breakdown Structure

3.4 Possible Risks And Risk Management
The following risk matrix (Table 3.2) was created to assess the risk of the project. The risk matrix
takes into consideration the likelihood that the risk will occur and the impact that it would have on the
project. A higher likelihood or a greater impact increases the severity of a risk. Likelihood ranges from
very likely to very unlikely. A risk that is very likely is defined as almost guaranteed to happen in the
project life cycle, and a risk defined as very unlikely is almost impossible. Impact ranges from minor to
severe; a risk defined as minor would cause a delay of a day at most, meanwhile a risk categorized
as severe would cause massive project delays in the order of days or weeks.

 SDMay20-25, December 8, 2019 27

 Design Document Revision 3

 Impact

 Minor Moderate Severe

Very Likely Medium High High

Likely Low High High

Possible Low Medium High

Unlikely Low Medium Medium

Very Unlikely Low Medium Medium

Table 3.2: The Risk Matrix Used to Assess The Risk Severity

There are three risks that SDMay20-25 has categorized as high; inaccurate results, results not clearly
understood, and our project having a steep learning curve.

The first of the highest risks is SDMay20-25s’ proposed solution gives inaccurate results. Crafty has
an implementation in place, and this risk happens if SDMay20-25’s proposed solution doesn’t perform
better than the already-in-place solution. The long term goal of SDMay20-25’s software solution is to
minimize loss. In this case, there are a couple of options to get a more accurate model. The testing
plan, covered in Section 5, states that the inputs to the algorithm are refined. Another option is to
create a new algorithm entirely using a different framework. SDMay20-25 will initially start their
prototype with a time series forecasting algorithm, however, SDMay20-25 has also considered
working with linear regression and machine learning approaches.

The second high-level risk SDMay20-25 will face is the results of the report output are not clearly
understood by the Crafty Procurement Team. It is important that the output report has a thought train
that clearly outlines the reasoning for each order.

The final high-level risk is the steep learning curve associated with this project. This is a risk because
it can lead to major delays in our project. Only one member of the team has experience working with
machine learning approaches.

SDMay20-25’s risk is mitigated by following these guidelines: integrating early and integrating often,
individual research to back up technology considerations, and communicating with the client Crafty
and SDMay20-25’s mentor Dr. Goce Trajcevski. Risks that involve finances are not relevant to our
project, as stated in Section 4.4.

 SDMay20-25, December 8, 2019 28

 Design Document Revision 3

3.5 Project Proposed Milestones and Evaluation Criteria
1. September 30th - Finalized Project Plans

By the end of September, SDMay20-25 will have completed the following tasks: define team
collaborations policies, obtain client background, and have met with the client to understand
the problem at hand. SDMay20-25 will have a greater understanding of Crafty’s problem and
how to approach it with the completion of this milestone.

2. October 31st - Finalized Project Plans

This will include the first iteration of the intended tech stack that will be used. The most
immediate design decision is the database; Crafty will send a sample database of one of their
product warehouses to SDMay20-25. An instance of a server and backend will follow. This will
establish a round trip connection. Adding a frontend component will be useful to visualize our
data. This milestone also covers the system design diagram.

3. November 30th - Methodology Selection and Tools

SDMay20-25 will have selected technologies and justified why they will be the best for the
task. We will then be able to start with building the finalized architecture and the finalized data
flow for the project.

4. January 31st - Testing Framework

During late January a testing framework will be provided as a deliverable. This framework will
allow for testing as development tasks are completed. Unit tests and automated tests will be
detailed in this document. This document will also likely be a living document as our testing will
likely evolve as our understanding of the project increases over time.

5. February 29th - Alpha Version of the Software Solution

The initial version of the software will be the deliverable due in February. At this time we will
have a working version of the system that shall satisfy the major requirements put in place by
the client. This will be presented to the client, Crafty, for review and analysis of the satisfaction
of requirements. The alpha version will have a full round trip connection as a proof of concept.

6. March 31st - Unit Testing and Validation

This deliverable will consist of a report on the overall state of the unit testing and what it
covers. The scenario previously created as well as many others will be created and tested on
each component of the system. See Section 5 on testing for more details. If the

 SDMay20-25, December 8, 2019 29

 Design Document Revision 3

7. April 30th - Integration Testing, Final Version of Software Solution, and Report

The final deliverable will be a full integration test suite that will verify that all the systems work
together and handle errors correctly. This milestone also includes a complete working software
solution (See Section 5 on testing for more details).

3.6 Project Tracking Procedures
SDMay20-25 uses GitLab issues as the primary method to track project progress. Each task found in
Table 3.1 is be posted in GitLab as an issue. Each issue includes a due date, assignees, and a
corresponding milestone as defined in Section 3.5. Tasks are generated by SDMay20-25 using a
work-breakdown structure (Table 3.1). Tasks were broken down into three categories: project
requirements or project planning, frontend, or backend. These tasks are to be completed on a weekly
basis; completed tasks usually produce software or written deliverables. It is important that each
issue in GitLab is well written and thoroughly documented. This is accomplished by adding a deadline
to each issue, assigning it to the appropriate milestone, and a detailed description of the issue.

Issues on GitLab has many features that will be useful to use including: labels, comments, due dates,
markdown support, a board view (see Figure 3.3), milestones, and many other managing tools. Gitlab
will be used to maintain an internal wiki. This wiki includes SDMay20-25’s meeting notes, guides for
installing various technologies, and individual research.

Figure 3.3: The Gitlab Board View Used to Track Issues

Informal communication is handled using Slack, a work-oriented instant messaging program.
SDMay20-25 has created relevant chat room, or channels, that includes all group members. Any
relevant information will be copied to the appropriate GitLab issue.

3.7 Expected Results and Validation

 SDMay20-25, December 8, 2019 30

 Design Document Revision 3

Crafty should expect a proof-of-concept that works, has been tested, and is proven to be a better
solution than their current implementation. The Consumer-Aware Warehouse Management
proof-of-concept will accurately predict the demand for the goods for the current ordering window
while also trying to maximize profit. Accuracy of the software solution is determined by testing it
against out test dataset, this is further defined in Section 5.3. This proof-of-concept will contain: a
database, a backend, frontend component, and will be hosted on a server; see Section 1.6 for the
expected end product.

4. Project Timeline, Estimated Resources, and
Challenges
This section highlights SDMay20-25’s project timeline and the feasibility of completing the project
successfully. A project timeline is provided and includes weekly tasks based on Figure 3.1 which
covers both semesters. It is important to determine whether SDMay20-25’s software solution can be
completed successfully and the feasibility report will cover the likelihood of that occurring given all
relevant factors to the project. Finally, any outstanding resources not covered earlier will be described
here as well.

4.1 Project Timeline
The project timeline will be split into two semesters. In the Fall semester, efforts will be focused on
project design development and core architecture implementation, which includes setting up a
frontend and server and ensuring the connection between them and the Crafty database. In the
Spring semester, the focus will shift to development and testing of the core functionality, which is our
prediction algorithm, and its integration within our architecture.

 SDMay20-25, December 8, 2019 31

 Design Document Revision 3

Figure 4.1 Gantt Chart for Fall 2019 (Weeks 1-8)

 SDMay20-25, December 8, 2019 32

 Design Document Revision 3

Figure 4.2 Gantt Chart for Fall 2019 (Weeks 9-16)

The purpose of the Fall semester is to lay the groundwork in preparation for the Spring semester,
which will consist mostly of implementation. The prediction algorithm is the most complex part of this
project and will require the most resources in terms of research, development, and testing. In order
for the implementation of the algorithm to go smoothly the framework upon which this algorithm
stands needs to be solidified. A good framework includes solid requirements, a plan, and a core
system architecture. This framework will be developed in the Fall semester. Tasks are presented in
Figures 4.1 and 4.2. Requirements Elicitation and Project Planning spans the first 9 weeks. The rest
of the semester involves the implementation of the core software architecture.

 SDMay20-25, December 8, 2019 33

 Design Document Revision 3

Week Tasks

1/13-1/19 Develop the testing Scenario

1/20-1/26 Develop the testing Scenario

1/27-2/2 Complete testing framework and re-evaluate design decisions

2/10-2/16 Integration of Forecasting Algorithm with Backend Server

2/17-2/23 Initial Revision of Forecasting Algorithm

2/24-3/1 Alpha Version Complete

3/2-3/8 Tuning Inputs to the Algorithm

3/9-3/15 Testing the Algorithm

3/16-3/22 Secondary Iteration of the Forecasting Algorithm

3/23-3/29 Tuning the inputs to the Algorithm; Unit Testing Complete

3/30-4/5 Testing the Second Iteration of the Algorithm.

4/6-4/12 Final Integration Testing

4/13-4/19 Final Tuning of the Algorithm

4/20-4/26 Documentation, Integration, and Final Testing

4/27-5/3 Final Presentation

Table 4.3 Weekly Task Breakdown for Spring 2020

The Spring semester is all about the prediction algorithm. Our tasks are outlined in Table 4.3. There
are three main components that need to be addressed in this phase of the project: The test scenario,
the prediction algorithm itself, and the testing and analysis of the algorithm.

The test scenario will be developed using the information received from discussions with Crafty and is
necessary to drive the development of the prediction algorithms.

Once the test scenario is defined, development will begin on the prediction algorithms. The initial
implementation will use a time series forecasting. The algorithm will then be iteratively implemented,
tested, analyzed, and optimized to tailor the solution to Crafty’s needs outlined in Section 1.3. For
more information, the development process is outlined in Section 2.3.

 SDMay20-25, December 8, 2019 34

 Design Document Revision 3

4.2 Feasibility Assessment
SDMay20-25’s project will primarily be an experimentation with prediction methods for Crafty’s
product warehouse stock ordering. SDMay20-25 will implement the prediction algorithms as the proof
of concept of their usefulness for product ordering in Crafty’s system. There are 2 main challenges
with this project. (1) SDMay20-25 has limited experience in relevant areas including machine learning
and forecasting, and (2) developing a robust test scenario will also be a challenge in this project. To
account for limited knowledge on machine learning and forecasting algorithms, a portion of the work
has been set aside for research into these areas. A robust test scenario is a testing set that accounts
for as many real-world scenarios as possible. To develop a robust test scenario, SDMay20-25 will
engage in bi-weekly discussions with their client to collect insight on common and important
real-world scenarios to get the most accurate and well-rounded test scenario. More information on
testing can be found in Section 5.

4.3 Personnel Effort Requirements
All task time estimates are found under the Effort Hours column in Figure 3.1. To generate the effort
estimates, the team met and made estimates as work was completed in the project. Estimates for the
tasks going forward were made based on the information about the time it took to complete past
tasks.

4.4 Financial Requirements
Software development and management tools will be used during the development of this project.
Free tiers of all software will be used when possible, and at this point in time, they will suffice. If the
need for paid software arises, SDMay20-25 will negotiate financial resources with Crafty. There are
no other financial requirements.

 SDMay20-25, December 8, 2019 35

 Design Document Revision 3

5. Testing and Implementation
This section contains the testing plan for SDMay20-25. It discusses the methods, tools, and
requirements testing environment.

5.1 Interface Specifications
The project does not have a hardware component, therefore the only interfacing to test is the
communication between the backend, database, and the frontend. However, there are many software
interfaces in the project. As shown in the Software Architecture Diagram, Figure 2.1, there are many
different interactions between the different points. There is a database that will interface with the
Spring backend API. From there, the Data Forecasting Controller is where the data forecast will run.
The data forecasting controller will communicate directly with the backend. The frontend display app
will communicate with the Spring Backend App directly for all of its data requests. All of these
interactions will have to be tested.

5.2 Hardware and Software Required
There will be little hardware required for the testing of the project since this is a software
implementation. The solution will only require a computer to run the software we develop. This could
be done on the server hardware we will be using, or if the computation overhead is not too large,
testing can be completed on the development machines.

SDMay20-25 has selected software tools to aid the testing outlined in Table 5.1. SDMay20-25 will be
using automated testing wherever possible.

Test Type Software Used

Continuous Integration and Deployment Gitlab CI/CD

Backend Unit Testing JUnit

Frontend Automated Testing React-Testing-Library

API Call Testing Postman

Table 5.1: Software Tools for Testing

 SDMay20-25, December 8, 2019 36

 Design Document Revision 3

5.3 Functional Testing
Unit testing will be used on the backend to ensure each class works properly. Integration testing will
be used to implement the interaction between the classes and ensure interactions between classes
are functional and data is being communicated properly.

To test the backend API, SDMay20-25 will test every endpoint to ensure that the data is formatted
correctly. Postman will be used to automate endpoint testing. The API will be checked to ensure the
data is being sent in the correct format. There will also be some selected tests to make sure the right
data is being sent for the endpoints.

The React-Testing-Library package will be used to test the frontend. The frontend developers will be
responsible for generating the test cases for the functions they create, as well as generating tests to
detect defects of rendered components. These test suites will be automatically run in the pipeline
along with the backend test suite. If the tests fail then the product will not be deployed.

In addition to the tests mentioned above, test cases will be developed using the provided data to
generate test data sets. The test data set will include a test case for when a product should be
ordered for the product warehouse when the stock is low, and another when the stock is projected to
be low before the next order can be placed. Another test case to consider is a case where the product
should not be ordered and make sure the algorithm does not falsely suggest that the product should
be ordered. Finally, the existing database will be scanned for time periods where clients were added
or other tricky prediction conditions occurred and the performance in those time frames will be
evaluated.

Acceptance testing will be a large component of the overall testing in this solution. The solution will
be reviewed with the client on a bi-weekly basis to show our progress. This will identify changes the
client desires early so they can be corrected with less effort. SDMay20-25 will also keep an open line
of communication with the client between meetings to ensure the requests of the client are well
understood.

Next, testing will be done by simulating the current day is a day in the past. The dataset will be split
into two subsets: training and evaluation. The most recent 3 months of data will be reserved as
evaluation data and the rest will be allocated for training. By telling the system that the current date is
at the end of the training algorithm, the evaluation data can be used to evaluate the performance of
the prediction. The consumption in the evaluation data will give an indication of the order predicted by
the solution would have resulted in missed sales or expired products.

The final acceptance test will compare the algorithm predictions against what a human would have
ordered.

 SDMay20-25, December 8, 2019 37

 Design Document Revision 3

5.4 Non-Functional Testing
In addition to the functional tests provided above, SDMay20-25 has outlined testing for performance,
security, usability and compatibility requirements.

Performance testing is a main priority for the project and the software should run with the
performance that the client sees as acceptable. The client has defined an initial benchmark as
keeping the loading time for a purchase order will be kept under 2 minutes for 90% of orders
generated and under 5 minutes for the remaining 10%. The client has noted that this metric can be
flexible and can be revisited throughout the development cycle.

SDMay20-25 and crafty have identified security as a concern, but have determined that it is not a
large concern in this solution. The solution is meant to be a proof of concept for the client. The
solution will not be directly used in production. If the solution is adopted by the client, they will be
adapting it to work within their existing system which already takes security considerations into
account.

Usability testing is a high priority in the solution. The client will determine how usable the solution is
for their procurement team. The client has indicated that their current implementation has room for
improvement mainly because the team does not trust the predictions. Therefore, usability will be
tested by ensuring that the algorithm outputs the correct reasoning behind a prediction. The solution
should be approachable and understandable to any member of the Crafty team. This means that the
Crafty team should not need knowledge of the implementation to understand the reasoning for the
predictions that are given. In addition to approachability, the client will compare the new solution to
the existing solution to determine if it is more approachable for the team to understand the decisions
that the solution is making.

Compatibility testing comes into consideration in the database for the project because the solution
focuses on retrieving data from the database and will write the results to the database. It is important
to ensure the database version we use is compatible with the version of the database in use at Crafty.
The version used on the Crafty Server is reported to be compatible with the version we use on our
server, and a conversation with the client reported that the version in use on SDMay20-25’s server is
in use on Crafty development machines and is used without issue.

5.5 Process
The procedures for testing are outlined in Sections 5.3 and 5.4 above. The testing will follow the
general workflow depicted in Figure 5.2

 SDMay20-25, December 8, 2019 38

 Design Document Revision 3

Figure 5.2: Testing Workflow

The testing process starts with developing unit tests. Unit tests will be written, and then the code that
is tested by those tests will be written. It will continue to be tested with unit and manual tests until the
tests pass. Once those tests are satisfied, the code will be pushed to the repository and the CI server
will run unit tests and integration tests on the commit. If it passes, it will be deployed automatically. At
that stage, the software will move on to acceptance testing which is outlined in Section 5.3.

5.6 Results
At this point in time, the development of the testing framework has begun. For the initial prototype of
the solution, manual acceptance tests have been employed. For the experiments, less stringent
testing is used. Once the development moves on to steps toward the final implementation, the full test
process will be employed.

 SDMay20-25, December 8, 2019 39

 Design Document Revision 3

6. Closing Material
The problem Crafty is facing is defined by the following points:

● Waste of expired product
● Missed sales due to insufficient inventory
● Erroneous and time-consuming labor efforts

The system will fulfill the following requirements. These were further explained in Section 1.3.

● Take data from the Crafty database
● Make predictions about optimal ordering to maintain product warehouse stock
● Consider future product ordering
● Have a visual component to interface with the generation of orders
● Be able to handle approximately 1200 SKUs a day
● Generate a report on demand

6.1 Conclusion
The project aims to maximize profit for Crafty by ensuring the product warehouse is adequately
stocked for new customer accounts and existing customer demands. It will also reduce waste by
ordering just enough until the next order can be placed, so nothing will expire, be thrown out, or waste
space in the product warehouse so the maximum amount of product possible can be held in the
product warehouse.

The solution will use Data Forecasting to use the inputs from the past orders, incoming orders and
current stock to recommend the ideal amount of product to order from a given distributor at a given
time. This will allow for a relatively accurate model with the relatively small dataset we have. It will
also allow for external inputs, like new customer onboarding where the initial consumption will be
higher than the expected weekly consumption.

Crafty already had an algorithm in place to aid with orders, but it was not trusted by the procurement
staff. Therefore, the proposed solution will have to be better than the existing solution and provide the
users with confidence in the decisions it makes. The proposed solution takes the needs into account
provided in the requirements.

 SDMay20-25, December 8, 2019 40

 Design Document Revision 3

6.2 References
[1] B. Delahaye. “How Artificial Intelligence in Supply Chain Planning Is Changing Retail and

Manufacturing.” NeuroChain.
https://www.neurochaintech.io/artificial-intelligence-supply-chain-planning/ (accessed Oct. 6,
2019)

[2] “Supply Chain Resource Cooperative Single Regression Approaches to Forecasting A Tutorial.”
North Carolina State University.
https://scm.ncsu.edu/scm-articles/article/single-regression-approaches-to-forecasting-a-tutorial
(accessed Oct. 6, 2019)

[3] “All the Risk Assessment Matrix Templates You Need” smartsheet.com.
https://www.smartsheet.com/all-risk-assessment-matrix-templates-you-need (accessed Oct. 6, 2019)

 SDMay20-25, December 8, 2019 41

https://www.neurochaintech.io/artificial-intelligence-supply-chain-planning/
https://scm.ncsu.edu/scm-articles/article/single-regression-approaches-to-forecasting-a-tutorial

 Design Document Revision 3

6.3 Appendices
Appendix 6.3.1 Database Schema Diagram - https://dbdiagram.io/d/5d9d4bb3ff5115114db50d55

 SDMay20-25, December 8, 2019 42

https://dbdiagram.io/d/5d9d4bb3ff5115114db50d55

